(facul	ty stamp) COURSE DESCRI	PTION	Z1-PU7	WYDANIE N1	Strona 1 z 2	
1. C	ourse title: NUMERICAL ALGORITHMS		2. Course code	Course code		
3. Va	alidity of course description: from 2015/2016					
4. Le	evel of studies: BSc programme / MSc programme					
5. M	ode of studies: intramural studies / extramural stud	ies				
6. Fi	eld of study: POWER ENGINEERING		(RIE)			
7. Pi	ofile of studies: <u>general</u>					
8. Pi	ogramme: Modernization of Power Installations					
9. Se	emester: 1					
10. F	aculty teaching the course: INSTITUTE OF POWER	R ENGINEERING AND TU	RBOMACHINER	Y		
11. (Course instructor: Sebastian Rulik, PhD					
12. (Course classification: general subjects					
13. (Course status: compulsory /elective					
14. L	-anguage of instruction: English					
15. F	Pre-requisite qualifications: mathematics, Information	n Technologies, Basics of	computer science	and programmin	g,	
16. 0	Course objectives:	f their application				
17.	Description of learning outcomes:					
Nr	Learning outcomes description	Method of assessment	Teach	ing methods	Learning outcomes reference code	
1.	Student understands and is able to apply basic numerical methods in solving complex mathematical problems and knows their application in the power engineering.	Test	Lecture		K_W05 K_W07 K_U19	
2.	Student knows and is able to practically use the selected numerical methods for the elaboration of research results.	Test	Lecture		K_W05 K_W07 K_U19	
3.	Student is able to apply selected methods of integration and differentiation to solve engineering problems.	Test	Laboratory		K_W05 K_W07 K_U19	
4	Student can describe and apply selected optimization techniques and knows their application in design process.	Test	Laboratory		K_W05 K_W07 K_U19	
5	Student can use selected numerical algorithms and is able to apply them in solving engineering problems.	Test	Laboratory		K_U08 K_U09 K_U19 K_U20 K_U23	
6.	Student is able to individually create complex computer applications using a number of numerical methods and algorithms in a specific programming language.	Test	Laboratory		K_U08 K_U09 K_U19 K_U20 K_U23	
18. 1 Lect	eacning modes and nours ure 30 / BSc /MSc Seminar / Class / Project / <u>Laboratory</u>	<u>30</u> Sem. 1				

Г

Т

19. Syllabus description:

Lecture.

Presentation of basic numerical methods and algorithms concerning the following problems: solving systems of linear equations, nonlinear equations and systems of nonlinear equations, interpolation and approximation methods including single- and multi-variable functions, numerical integration and differentiation, optimization with the use of gradient based methods and heuristic methods, . e.g. genetic algorithms, optimization with the use of meta models based on neural networks.

Laboratory.

Application of presented during the lecture selected numerical methods using Visual Basic for Applications programming language. Issues taken under consideration includes:

- Selected methods of solving systems of linear equations Gaussian elimination method, Simple iteration method,
- Selected methods of solving nonlinear equations Bisection method, Newton method and False Position Method,
- Interpolation of single variable function: polynomial interpolation and Lagrange polynomial,
- Approximation using the method of least squares
- Integration using the method of rectangles, trapezoids and Simpson's formula
- Solving differential equations using the Euler method and its improvements.

20. Examination: no

21. Primary sources:

- Hoffman J. D., NUMERICAL METHODS FOR ENGINEERS AND SCIENTISTS, Marcel Dekker, Inc, New York, 2001
- Press W. H., Teukolsky S. A., Wotterling W. T., Flannery, NUMERICAL RECEIPES: THE ART. OF SCIENTIFIC COMPUTING, Cambridge University Press, 1990
- Majchrzak E, Mochnacki B., METODY NUMERYCZNE. PODSTAWY TEORETYCZNE, ASPEKTY PRAKTYCZNE I ALGORYTMY, Wyd. Pol. Śląskiej, Gliwice, 1994
- Michalewicz Z., ALGORYTMY GENETYCZNE + STRUKTURY DANYCH = PROGRAMY EWOLUCYJNE, Wydaw. Naukowo-Techniczne, Warszawa, 2003

22. Secondary sources:

- Collins G. W. FUNDAMENTAL NUMERICAL METHODS AND DATA ANALYSIS, ADS Digital Library, 2003
- Szmelter J., METODY KOMPUTEROWE W MECHANICE, PWN Warszawa, 1980

23. Tot	al workload required to achieve learning outo	comes
Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	/
3	Laboratory	30/30
4	Project	
5	BA/ MA Seminar	1
6	Other	1
	Total number of hours	60/60
24. Tot	al hours: 120	
25. Nu	mber of ECTS credits: 4	
26. Nui	mber of ECTS credits allocated for contact he	ours: 2
27. Nui	mber of ECTS credits allocated for in-practice	e hours (laboratory classes, projects): 1
26. Coi	mments:	

۸n	nround	
Aμ	pioveu.	

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)